Living Marine Resources

NOAA FISHERIES

The Heartbeat of Ocean Observations

Bonnie J. Ponwith, Ph.D.
Science and Research Director Southeast Fisheries Science Center

NOAA Fisheries Mission

Stewardship of living marine resources through science-based conservation and management and the promotion of healthy ecosystems.

Case for incorporating environmental data into stock assessments

With Magnuson-Stevens Act we have largely ended overfishing, identified and protected critical habitat

One might consider our job as done, but ...
we and the species on which we work live in a dynamic environment

Aim of our 'Next Generation' of population assessments is to explicitly consider environmental factors

Some examples

- 1. Satellite derived indices of red tide severity
- 2. Modeling recruitment
- 3. Poleward shifts in swordfish distribution
- 4. Oxygen minimum zones and habitat compression

Red Tide

Red tides (Karenia brevis) in Gulf of Mexico

- Dinoflagellate, Karenia brevis
- brevetoxin paralyzes, suffocates fish and mammals; bioaccumulates by ingestion
- First recorded by Hernan De Soto 1500's
- 1946-47 bloom estimated kill of 500 million fish
-Human health concern
- shellfish and beach closures
- Large research initiatives (EcoHab, FWRI, etc.)

NMFS survey in 2005 sampled during the red tide event. One station was close to a very high in red tide measurement.

NOAA FISHERIES

By September red tide was everywhere sampling extended

Karenia brevis Counts, September 26-30, 2005

Red tide overlaps the core grouper distribution, particularly the inshore regions

NMFS longline survey stations

Karenia brevis Counts, September 26-30, 2005

FWRI red tide Data

NOAA FISHERIES

SeaWiFS satellite-derived indices of red tide probability

2005 Bloom

2010 No red tide

Avg probability

Avg se

Avg probability

Avg se

Including the index greatly improves population modeling and explains what was otherwise unexplained declines (20% of the population, or 8 million gag and red grouper combined) in 2005

Walter et al 2013

2005-06 Red and G2.̧g Grouper indices ~ 50\% decline

\curvearrowleft Video
\curvearrowleft Comm LL
\pm Comm HL
$\simeq \mathrm{HB}\left(18{ }^{\prime \prime} \mathrm{MSL}\right)$
米 HB(20" MSL)
geto-MRFSS

Red snapper stock:recruitment

Stock - recruitment relationship

We know where the currents are...

(www.hycom.org)

- Data-assimilative hydrodynamic model (HYCOM)

...and we know where the eggs are released and where the larvae settle...

Spawning time:

May 1 - Oct 31
Spawning frequency:
every 5 days
Pelagic larval duration:
26-30d

...so we can model recruitment events

Oceanographic currents

2008 - bad year

Larvae advected away from settlement areas

2012 - good year

Larvae advected towards settlement areas

Larval transport in good vs. bad years

Red snapper 2012 assessment

Karnauskas et al. 2013.

Effect on stock assessment model

-Integrating environmental factors into stock assessment reduces "cone of uncertainty"

Atlantic swordfish distributions

A HYPOTHESIS OF A RECENT POLEWARD SHIFT IN

THE DISTRIBUTION OF NORTH ATLANTIC SWORDFISH

VERSION 1.0

DRAFT

Michael J. Schirripa
Irene Andrushchenko
Craig Brown
Guillermo A. Diaz
Alex Hanke
Matt Lauretta
John Walter
Mauricio Ortiz
J. Mejuto, B. Garcia-Cortés and A. Ramos-Cartelle
Everyone Else

September 2, 2013

This study sought to address three questions:

- (1) is there sufficient evidence to conclude that there has been a recent poleward shift in the Swordfish distribution in the north Atlantic;
- (2) if so, can this shift be quantified and are we making progress by accounting for it within the stock assessment model; and
- (3) assuming number one is true, is this poleward shift unidirectional, or are we merely observing an abbreviated section of a reoccurring decadal cycle, the direction of which could change again sometime in the future?

Month

Change in CPUE Coincident with switching in AWP and the AMO

Expanding Oxygen Minimum Zones, Iropical Pelagic Predators, and the Atlantic LL Eisheries that Exploit them:

Eric D. Prince ${ }^{1}$, John P. Hoolihan ${ }^{2}$, Jiangang Luo ${ }^{3}$, Carlos Palma', Lothar Stramma ${ }^{5}$, and Sunke Schmidtko ${ }^{5}$

${ }^{1}$ Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami; FL 33149 USA, ${ }^{2}$ Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School for Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL33149, USA, ${ }^{3}$ Rosenstiel School of Marine and-Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA, ${ }^{4}$ ICCAT Secretariat, C/ Corazon de Maria, 8, 6 floor, 28002 Madrid, Germany, ${ }^{\text {弚 }}$

Tropical tunas and billfish have high a performance physiology

- They are all obligate ram ventilators;;
- They requite large amounts of dissolved oxygen; and,
- Start exhibiting physiological stress below DO concentrations of about $3.5 \mathrm{mLL} \mathrm{L}^{-1}$, the hypoxic threshold used in this study:

Compression Impacts and the Stiock Assessment Process

Case for incorporating environmental data into stock assessments

With Magnuson-Stevens Act we have largely ended overfishing, identified and protected critical habitat and conserved protected resources

One might consider our job as done, but ...
we and the species on which we work live in a dynamic environment
Aim of our 'Next Generation' of population assessments is to explicitly consider environmental factors

Partnerships with OOS are critical for this to succeed

